Kissing number problem
In geometry, a kissing number is defined as the number of nonoverlapping unit spheres that can be arranged such that they each touch another given unit sphere. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another. Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number.
In general, the kissing number problem seeks the maximum possible kissing number for ndimensional spheres in (n + 1)dimensional Euclidean space. Ordinary spheres correspond to twodimensional closed surfaces in threedimensional space.
Finding the kissing number when centers of spheres are confined to a line (the onedimensional case) or a plane (twodimensional case) is trivial. Proving a solution to the threedimensional case, despite being easy to conceptualise and model in the physical world, eluded mathematicians until the mid20th century.^{}^{} Solutions in higher dimensions are considerably more challenging, and only a handful of cases have been solved exactly. For others investigations have determined upper and lower bounds, but not exact solutions.^{}
Known greatest kissing numbers
In one dimension, the kissing number is 2:
In two dimensions, the kissing number is 6:
Proof: Consider a circle with center C that is touched by circles with centers C_{1}, C_{2}, .... Consider the rays C C_{i}. These rays all emanate from the same center C, so the sum of angles between adjacent rays is 360°.
Assume by contradiction that there are more than 6 touching circles. Then at least two adjacent rays, say C C_{1} and C C_{2}, are separated by an angle of less than 60°. The segments C C_{i} have the same length  2r  for all i. Therefore the triangle C C_{1} C_{2} is isosceles, and its third side  C_{1} C_{2}  has a side length of less than 2r. Therefore the circles 1 and 2 intersect  a contradiction.^{}
In three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, but there is a lot of space left over, and it is not obvious that there is no way to pack in a 13th sphere. (In fact, there is so much extra space that any two of the 12 outer spheres can exchange places through a continuous movement without any of the outer spheres losing contact with the center one.) This was the subject of a famous disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12; Gregory thought that a 13th could fit. Some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof (according to Brass, Moser, and Pach) did not appear until 1953.^{}^{}^{}
The twelve neighbors of the central sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size (as in a chemical element). A coordination number of 12 is found in a cubic closepacked or a hexagonal closepacked structure.
In four dimensions, it was known for some time that the answer is either 24 or 25. It is easy to produce a packing of 24 spheres around a central sphere (one can place the spheres at the vertices of a suitably scaled 24cell centered at the origin). As in the threedimensional case, there is a lot of space left over—even more, in fact, than for n = 3—so the situation was even less clear. In 2003, Oleg Musin proved the kissing number for n = 4 to be 24, using a subtle trick.^{}^{}
The kissing number in n dimensions is unknown for n > 4, except for n = 8 (240), and n = 24 (196,560).^{}^{} The results in these dimensions stem from the existence of highly symmetrical lattices: the E_{8} lattice and the Leech lattice.
If arrangements are restricted to regular arrangements, in which the centres of the spheres all lie on points in a lattice, then this restricted kissing number is known for n = 1 to 9 and n = 24 dimensions.^{} For 5, 6 and 7 dimensions the arrangement with the highest known kissing number is the optimal lattice arrangement, but the existence of a nonlattice arrangement with a higher kissing number has not been excluded.
Some known bounds
The following table lists some known bounds on the kissing number in various dimensions.^{} The dimensions in which the kissing number is known are listed in boldface.
Dimension  Lower bound 
Upper bound 

1  2  
2  6  
3  12  
4  24^{}  
5  40  44 
6  72  78 
7  126  134 
8  240  
9  306  364 
10  500  554 
11  582  870 
12  840  1,357 
13  1,154^{}  2,069 
14  1,606^{}  3,183 
15  2,564  4,866 
16  4,320  7,355 
17  5,346  11,072 
18  7,398  16,572 
19  10,688  24,812 
20  17,400  36,764 
21  27,720  54,584 
22  49,896  82,340 
23  93,150  124,416 
24  196,560 
Generalization
The kissing number problem can be generalized to the problem of finding the maximum number of nonoverlapping congruent copies of any convex body that touch a given copy of the body. There are different versions of the problem depending on whether the copies are only required to be congruent to the original body, translates of the original body, or translated by a lattice. For the regular tetrahedron, for example, it is known that both the lattice kissing number and the translative kissing number are equal to 18, whereas the congruent kissing number is at least 56.^{}
Mathematical statement
The kissing number problem can be stated as the existence of a solution to a set of inequalities. Let be a set of N Ddimensional position vectors of the centres of the spheres. The condition that this set of spheres can lie round the centre sphere without overlapping is:
Thus the problem for each dimension is not conceptually hard but general methods of solving systems of inequalities are very inefficient (even with powerful symbolic algebra computer software) which is why this problem has only been solved up to 4 dimensions. By adding additional variables, this can be converted to a single quartic equation in N(N1)/2 + DN variables:
Therefore to solve the case in 5 dimensions would be equivalent to determining the existence of real solutions to a quartic polynomial in 1025 variables and for the 24 dimensional case the quartic would have 19,322,732,544 variables. An alternative statement in terms of distance geometry is given by the distances squared between then n^{th} and m^{th} sphere.
This must be supplemented with the condition that the CayleyMenger Determinant is zero for any set of points which forms an (n+1) simplex in n dimensions. Since that volume must be zero. Setting gives a set of simultaneous polynomial equations in just y which must be solved for real values only. The two methods, being entirely equivalent, have various different uses. For example in the second case one can randomly alter the values of the y by small amounts to try and minimise the polynomial in terms of the y.
See also
Notes
References
 T. Aste and D. Weaire "The Pursuit of Perfect Packing" (Institute Of Physics Publishing London 2000) ISBN 0750306483
 Table of the Highest Kissing Numbers Presently Known maintained by Gabriele Nebe and Neil Sloane (lower bounds)
 Christine Bachoc and Frank Vallentin. "New upper bounds for kissing numbers from semidefinite programming".

