Existential generalization

In predicate logic, existential generalization (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition. In first-order logic, it is often used as a rule for the existential quantifier (∃) in formal proofs.

Example: "Rover loves to wag his tail. Therefore, something loves to wag its tail."

In the Fitch-style calculus:

Where a replaces all free instances of x within Q(x).


Universal instantiation and Existential Generalization are two aspects of a single principle, for instead of saying that "∀x x=x" implies "Socrates=Socrates", we could as well say that the denial "Socrates≠Socrates"' implies "∃x xx". The principle embodied in these two operations is the link between quantifications and the singular statements that are related to them as instances. Yet it is a principle only by courtesy. It holds only in the case where a term names and, furthermore, occurs referentially.

See also

  • Inference rules