Brane theory
String theory 

Fundamental objects 

Perturbative theory 

Nonperturbative results 

Phenomenology 
Mathematics 

Related concepts

Theorists


In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. For example, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higherdimensional branes. In dimension p, these are called pbranes. The word brane comes from the word "membrane" which refers to a twodimensional brane.^{}
Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge. A pbrane sweeps out a (p+1)dimensional volume in spacetime called its worldvolume. Physicists often study fields analogous to the electromagnetic field which live on the worldvolume of a brane.^{}
In string theory, Dbranes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a Dbrane. The letter "D" in Dbrane refers to a certain mathematical condition on the system known as the Dirichlet boundary condition. The study of Dbranes in string theory has led to important results such as the AdS/CFT correspondence, which has shed light on many problems in quantum field theory.
Branes are also frequently studied from a purely mathematical point of view since they are related to subjects such as homological mirror symmetry and noncommutative geometry. Mathematically, branes may be represented as objects of certain categories, such as the derived category of coherent sheaves on a Calabi–Yau manifold, or the Fukaya category.
Dbranes
In string theory, a string may be open (forming a segment with two endpoints) or closed (forming a closed loop). Dbranes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a Dbrane. The letter "D" in Dbrane refers to a condition that it satisfies, the Dirichlet boundary condition.^{}
One crucial point about Dbranes is that the dynamics on the Dbrane worldvolume is described by a gauge theory, a kind of highly symmetric physical theory which is also used to describe the behavior of elementary particles in the standard model of particle physics. This connection has led to many important insights into gauge theory. For example, it led to the discovery of the AdS/CFT correspondence, a theoretical tool that physicists use to translate difficult problems in gauge theory into more mathematically tractable problems in string theory.^{}
Mathematical viewpoint
Mathematically, branes can be described using the notion of a category.^{} This is a mathematical structure consisting of objects, and for any pair of objects, a set of morphisms between them. In most examples, the objects are mathematical structures (such as sets, vector spaces, or topological spaces) and the morphisms are functions between these structures.^{} One can also consider categories where the objects are Dbranes and the morphisms between two branes and are states of open strings stretched between and .^{}
In one version of string theory known as the topological Bmodel, the Dbranes are complex submanifolds of certain sixdimensional shapes called Calabi–Yau manifolds, together with additional data that arise physically from having charges at the endpoints of strings.^{} Intuitively, one can think of a submanifold as a surface embedded inside of a Calabi–Yau manifold, although submanifolds can also exist in dimensions different from two.^{} In mathematical language, the category having these branes as its objects is known as the derived category of coherent sheaves on the Calabi–Yau.^{} In another version of string theory called the topological Amodel, the Dbranes can again be viewed as submanifolds of a Calabi–Yau manifold. Roughly speaking, they are what mathematicians call special Lagrangian submanifolds.^{} This means among other things that they have half the dimension of the space in which they sit, and they are length, area, or volumeminimizing.^{} The category having these branes as its objects is called the Fukaya category.^{}
The derived category of coherent sheaves is constructed using tools from complex geometry, a branch of mathematics that describes geometric curves in algebraic terms and solves geometric problems using algebraic equations.^{} On the other hand, the Fukaya category is constructed using symplectic geometry, a branch of mathematics that arose from studies of classical physics. Symplectic geometry studies spaces equipped with a symplectic form, a mathematical tool that can be used to compute area in twodimensional examples.^{}
The homological mirror symmetry conjecture of Maxim Kontsevich states that the derived category of coherent sheaves on one Calabi–Yau manifold is equivalent in a certain sense to the Fukaya category of a completely different Calabi–Yau manifold.^{} This equivalence provides an unexpected bridge between two branches of geometry, namely complex and symplectic geometry.^{}
See also
 Black brane
 Brane cosmology
 M2brane
 NS5brane
Notes
References
 Aspinwall, Paul; Bridgeland, Tom; Craw, Alastair; Douglas, Michael; Gross, Mark; Kapustin, Anton; Moore, Gregory; Segal, Graeme; Szendröi, Balázs; Wilson, P.M.H., eds. (2009). Dirichlet Branes and Mirror Symmetry. American Mathematical Society. ISBN 9780821838488.
 Mac Lane, Saunders (1998). Categories for the Working Mathematician. ISBN 9780387984032.
 Moore, Gregory (2005). "What is ... a Brane?" (PDF). Notices of the AMS 52: 214. Retrieved June 2013.
 Yau, ShingTung; Nadis, Steve (2010). The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. Basic Books. ISBN 9780465020232.
 Zaslow, Eric (2008). "Mirror Symmetry". In Gowers, Timothy. The Princeton Companion to Mathematics. ISBN 9780691118802.