Adjoint functor
In mathematics, specifically category theory, adjunction is a possible relationship between two functors.
Adjunction is ubiquitous in mathematics, as it specifies intuitive notions of optimization and efficiency.
In the most concise symmetric definition, an adjunction between categories C and D is a pair of functors,
 and
and a family of bijections
which is natural in the variables X and Y. The functor F is called a left adjoint functor, while G is called a right adjoint functor. The relationship “F is left adjoint to G” (or equivalently, “G is right adjoint to F”) is sometimes written
This definition and others are made precise below.
Introduction
“The slogan is ‘Adjoint functors arise everywhere’.” (Saunders Mac Lane, Categories for the working mathematician)
The long list of examples in this article is only a partial indication of how often an interesting mathematical construction is an adjoint functor. As a result, general theorems about left/right adjoint functors, such as the equivalence of their various definitions or the fact that they respectively preserve colimits/limits (which are also found in every area of mathematics), can encode the details of many useful and otherwise nontrivial results.
Spelling (or morphology)
One can observe (e.g. in this article), two different roots are used: "adjunct" and "adjoint". From Oxford shorter English dictionary, "adjunct" is from Latin, "adjoint" is from French.
In Mac Lane, Categories for the working mathematician, chap. 4, "Adjoints", one can verify the following usage.
The homset bijection is an "adjunction".
If an arrow in , is the right "adjunct" of (p. 81).
The functor is left "adjoint" for .
Motivation
Solutions to optimization problems
It can be said that an adjoint functor is a way of giving the most efficient solution to some problem via a method which is formulaic. For example, an elementary problem in ring theory is how to turn a rng (which is like a ring that might not have a multiplicative identity) into a ring. The most efficient way is to adjoin an element '1' to the rng, adjoin all (and only) the elements which are necessary for satisfying the ring axioms (e.g. r+1 for each r in the ring), and impose no relations in the newly formed ring that are not forced by axioms. Moreover, this construction is formulaic in the sense that it works in essentially the same way for any rng.
This is rather vague, though suggestive, and can be made precise in the language of category theory: a construction is most efficient if it satisfies a universal property, and is formulaic if it defines a functor. Universal properties come in two types: initial properties and terminal properties. Since these are dual (opposite) notions, it is only necessary to discuss one of them.
The idea of using an initial property is to set up the problem in terms of some auxiliary category E, and then identify that what we want is to find an initial object of E. This has an advantage that the optimization — the sense that we are finding the most efficient solution — means something rigorous and is recognisable, rather like the attainment of a supremum. The category E is also formulaic in this construction, since it is always the category of elements of the functor to which one is constructing an adjoint. In fact, this latter category is precisely the comma category over the functor in question.
As an example, take the given rng R, and make a category E whose objects are rng homomorphisms R → S, with S a ring having a multiplicative identity. The morphisms in E between R → S_{1} and R → S_{2} are commutative triangles of the form (R → S_{1},R → S_{2}, S_{1} → S_{2}) where S_{1} → S_{2} is a ring map (which preserves the identity). Note that this is precisely the definition of the comma category of R over the inclusion of unitary rings into rng. The existence of a morphism between R → S_{1} and R → S_{2} implies that S_{1} is at least as efficient a solution as S_{2} to our problem: S_{2} can have more adjoined elements and/or more relations not imposed by axioms than S_{1}. Therefore, the assertion that an object R → R* is initial in E, that is, that there is a morphism from it to any other element of E, means that the ring R* is a most efficient solution to our problem.
The two facts that this method of turning rngs into rings is most efficient and formulaic can be expressed simultaneously by saying that it defines an adjoint functor.
Symmetry of optimization problems
Continuing this discussion, suppose we started with the functor F, and posed the following (vague) question: is there a problem to which F is the most efficient solution?
The notion that F is the most efficient solution to the problem posed by G is, in a certain rigorous sense, equivalent to the notion that G poses the most difficult problem that F solves.^{[]}
This has the intuitive meaning that adjoint functors should occur in pairs, and in fact they do, but this is not trivial from the universal morphism definitions. The equivalent symmetric definitions involving adjunctions and the symmetric language of adjoint functors (we can say either F is left adjoint to G or G is right adjoint to F) have the advantage of making this fact explicit.
Formal definitions
There are various definitions for adjoint functors. Their equivalence is elementary but not at all trivial and in fact highly useful. This article provides several such definitions:
 The definitions via universal morphisms are easy to state, and require minimal verifications when constructing an adjoint functor or proving two functors are adjoint. They are also the most analogous to our intuition involving optimizations.
 The definition via counitunit adjunction is convenient for proofs about functors which are known to be adjoint, because they provide formulas that can be directly manipulated.
 The definition via homsets makes symmetry the most apparent, and is the reason for using the word adjoint.
Adjoint functors arise everywhere, in all areas of mathematics. Their full usefulness lies in that the structure in any of these definitions gives rise to the structures in the others via a long but trivial series of deductions. Thus, switching between them makes implicit use of a great deal of tedious details that would otherwise have to be repeated separately in every subject area. For example, naturality and terminality of the counit can be used to prove that any right adjoint functor preserves limits.
Conventions
The theory of adjoints has the terms left and right at its foundation, and there are many components which live in one of two categories C and D which are under consideration. It can therefore be extremely helpful to choose letters in alphabetical order according to whether they live in the "lefthand" category C or the "righthand" category D, and also to write them down in this order whenever possible.
In this article for example, the letters X, F, f, ε will consistently denote things which live in the category C, the letters Y, G, g, η will consistently denote things which live in the category D, and whenever possible such things will be referred to in order from left to right (a functor F:C←D can be thought of as "living" where its outputs are, in C).
Universal morphisms
A functor F : C ← D is a left adjoint functor if for each object X in C, there exists a terminal morphism from F to X. If, for each object X in C, we choose an object G_{0}X of D for which there is a terminal morphism ε_{X} : F(G_{0}X) → X from F to X, then there is a unique functor G : C → D such that GX = G_{0}X and ε_{Xʹ} ∘ FG(f) = f ∘ ε_{X} for f : X → Xʹ a morphism in C; F is then called a left adjoint to G.
A functor G : C → D is a right adjoint functor if for each object Y in D, there exists an initial morphism from Y to G. If, for each object Y in D, we choose an object F_{0}Y of C and an initial morphism η_{Y} : Y → G(F_{0}Y) from Y to G, then there is a unique functor F : C ← D such that FY = F_{0}Y and GF(g) ∘ η_{Y} = η_{Yʹ} ∘ g for g : Y → Yʹ a morphism in D; G is then called a right adjoint to F.
Remarks:
It is true, as the terminology implies, that F is left adjoint to G if and only if G is right adjoint to F. This is apparent from the symmetric definitions given below. The definitions via universal morphisms are often useful for establishing that a given functor is left or right adjoint, because they are minimalistic in their requirements. They are also intuitively meaningful in that finding a universal morphism is like solving an optimization problem.
Counitunit adjunction
A counitunit adjunction between two categories C and D consists of two functors F : C ← D and G : C → D and two natural transformations
respectively called the counit and the unit of the adjunction (terminology from universal algebra), such that the compositions
are the identity transformations 1_{F} and 1_{G} on F and G respectively.
In this situation we say that F is left adjoint to G and G is right adjoint to F , and may indicate this relationship by writing , or simply .
In equation form, the above conditions on (ε,η) are the counitunit equations
which mean that for each X in C and each Y in D,
 .
Note that here denotes identity functors, while above the same symbol was used for identity natural transformations.
These equations are useful in reducing proofs about adjoint functors to algebraic manipulations. They are sometimes called the zigzag equations because of the appearance of the corresponding string diagrams. A way to remember them is to first write down the nonsensical equation and then fill in either F or G in one of the two simple ways which make the compositions defined.
Note: The use of the prefix "co" in counit here is not consistent with the terminology of limits and colimits, because a colimit satisfies an initial property whereas the counit morphisms will satisfy terminal properties, and dually. The term unit here is borrowed from the theory of monads where it looks like the insertion of the identity 1 into a monoid.
Homset adjunction
A homset adjunction between two categories C and D consists of two functors F : C ← D and G : C → D and a natural isomorphism
 .
This specifies a family of bijections
 .
for all objects X in C and Y in D.
In this situation we say that F is left adjoint to G and G is right adjoint to F , and may indicate this relationship by writing , or simply .
This definition is a logical compromise in that it is somewhat more difficult to satisfy than the universal morphism definitions, and has fewer immediate implications than the counitunit definition. It is useful because of its obvious symmetry, and as a steppingstone between the other definitions.
In order to interpret Φ as a natural isomorphism, one must recognize hom_{C}(F–, –) and hom_{D}(–, G–) as functors. In fact, they are both bifunctors from D^{op} × C to Set (the category of sets). For details, see the article on hom functors. Explicitly, the naturality of Φ means that for all morphisms f : X → X′ in C and all morphisms g : Y′ → Y in D the following diagram commutes:
The vertical arrows in this diagram are those induced by composition with f and g. Formally, Hom(Fg, f) : Hom_{C}(FY, X) → Hom_{C}(FY′, X′) is given by h → f o h o Fg for each h in Hom_{C}(FY, X). Hom(g, Gf) is similar.
Adjunctions in full
There are hence numerous functors and natural transformations associated with every adjunction, and only a small portion is sufficient to determine the rest.
An adjunction between categories C and D consists of
 A functor F : C ← D called the left adjoint
 A functor G : C → D called the right adjoint
 A natural isomorphism Φ : hom_{C}(F–,–) → hom_{D}(–,G–)
 A natural transformation ε : FG → 1_{C} called the counit
 A natural transformation η : 1_{D} → GF called the unit
An equivalent formulation, where X denotes any object of C and Y denotes any object of D:
For every Cmorphism f : FY → X, there is a unique Dmorphism Φ_{Y, X}(f) = g : Y → GX such that the diagrams below commute, and for every Dmorphism g : Y → GX, there is a unique Cmorphism Φ^{−1}_{Y, X}(g) = f : FY → X in C such that the diagrams below commute:
From this assertion, one can recover that:
 The transformations ε, η, and Φ are related by the equations
 The transformations ε, η satisfy the counitunit equations
 Each pair (GX, ε_{X}) is a terminal morphism from F to X in C
 Each pair (FY, η_{Y}) is an initial morphism from Y to G in D
In particular, the equations above allow one to define Φ, ε, and η in terms of any one of the three. However, the adjoint functors F and G alone are in general not sufficient to determine the adjunction. We will demonstrate the equivalence of these situations below.
Universal morphisms induce homset adjunction
Given a right adjoint functor G : C → D; in the sense of initial morphisms, one may construct the induced homset adjunction by doing the following steps.
 Construct a functor F : C ← D and a natural transformation η.
 For each object Y in D, choose an initial morphism (F(Y), η_{Y}) from Y to G, so we have η_{Y} : Y → G(F(Y)). We have the map of F on objects and the family of morphisms η.
 For each f : Y_{0} → Y_{1}, as (F(Y_{0}), η_{Y0}) is an initial morphism, then factorize η_{Y1}o f with η_{Y0} and get F(f) : F(Y_{0}) → F(Y_{1}). This is the map of F on morphisms.
 The commuting diagram of that factorization implies the commuting diagram of natural transformations, so η : 1_{D} → G o F is a natural transformation.
 Uniqueness of that factorization and that G is a functor implies that the map of F on morphisms preserves compositions and identities.
 Construct a natural isomorphism Φ : hom_{C}(F,) → hom_{D}(,G).
 For each object X in C, each object Y in D, as (F(Y), η_{Y}) is an initial morphism, then Φ_{Y, X} is a bijection, where Φ_{Y, X}(f : F(Y) → X) = G(f) o η_{Y}.
 η is a natural transformation, G is a functor, then for any objects X_{0}, X_{1} in C, any objects Y_{0}, Y_{1} in D, any x : X_{0} → X_{1}, any y : Y_{1} → Y_{0}, we have Φ_{Y1, X1}(x o f o F(y)) = G(x) o G(f) o G(F(y)) o η_{Y1} = G(x) o G(f) o η_{Y0}o y = G(x) o Φ_{Y0, X0}(f) o y, and then Φ is natural in both arguments.
A similar argument allows one to construct a homset adjunction from the terminal morphisms to a left adjoint functor. (The construction that starts with a right adjoint is slightly more common, since the right adjoint in many adjoint pairs is a trivially defined inclusion or forgetful functor.)
Counitunit adjunction induces homset adjunction
Given functors F : C ← D, G : C → D, and a counitunit adjunction (ε, η) : F G, we can construct a homset adjunction by finding the natural transformation Φ : hom_{C}(F,) → hom_{D}(,G) in the following steps:
 For each f : FY → X and each g : Y → GX, define
 The transformations Φ and Ψ are natural because η and ε are natural.
 Using, in order, that F is a functor, that ε is natural, and the counitunit equation 1_{FY} = ε_{FY}o F(η_{Y}), we obtain
 hence ΨΦ is the identity transformation.
 Dually, using that G is a functor, that η is natural, and the counitunit equation 1_{GX} = G(ε_{X}) o η_{GX}, we obtain
 hence ΦΨ is the identity transformation. Thus Φ is a natural isomorphism with inverse Φ^{−1} = Ψ.
Homset adjunction induces all of the above
Given functors F : C ← D, G : C → D, and a homset adjunction Φ : hom_{C}(F,) → hom_{D}(,G), we can construct a counitunit adjunction
 ,
which defines families of initial and terminal morphisms, in the following steps:
 Let for each X in C, where is the identity morphism.
 Let for each Y in D, where is the identity morphism.
 The bijectivity and naturality of Φ imply that each (GX, ε_{X}) is a terminal morphism from F to X in C, and each (FY, η_{Y}) is an initial morphism from Y to G in D.
 The naturality of Φ implies the naturality of ε and η, and the two formulas
 for each f: FY → X and g: Y → GX (which completely determine Φ).
 Substituting FY for X and η_{Y} = Φ_{Y, FY}(1_{FY}) for g in the second formula gives the first counitunit equation
 ,
 and substituting GX for Y and ε_{X} = Φ^{−1}_{GX, X}(1_{GX}) for f in the first formula gives the second counitunit equation
 .
History
Ubiquity
The idea of an adjoint functor was formulated by Daniel Kan in 1958. Like many of the concepts in category theory, it was suggested by the needs of homological algebra, which was at the time devoted to computations. Those faced with giving tidy, systematic presentations of the subject would have noticed relations such as
 hom(F(X), Y) = hom(X, G(Y))
in the category of abelian groups, where F was the functor (i.e. take the tensor product with A), and G was the functor hom(A,–). The use of the equals sign is an abuse of notation; those two groups are not really identical but there is a way of identifying them that is natural. It can be seen to be natural on the basis, firstly, that these are two alternative descriptions of the bilinear mappings from X × A to Y. That is, however, something particular to the case of tensor product. In category theory the 'naturality' of the bijection is subsumed in the concept of a natural isomorphism.
The terminology comes from the Hilbert space idea of adjoint operators T, U with , which is formally similar to the above relation between homsets. We say that F is left adjoint to G, and G is right adjoint to F. Note that G may have itself a right adjoint that is quite different from F (see below for an example). The analogy to adjoint maps of Hilbert spaces can be made precise in certain contexts.^{}
If one starts looking for these adjoint pairs of functors, they turn out to be very common in abstract algebra, and elsewhere as well. The example section below provides evidence of this; furthermore, universal constructions, which may be more familiar to some, give rise to numerous adjoint pairs of functors.
In accordance with the thinking of Saunders Mac Lane, any idea, such as adjoint functors, that occurs widely enough in mathematics should be studied for its own sake.^{[]}
Problems formulations
Mathematicians do not generally need the full adjoint functor concept. Concepts can be judged according to their use in solving problems, as well as for their use in building theories. The tension between these two motivations was especially great during the 1950s when category theory was initially developed. Enter Alexander Grothendieck, who used category theory to take compass bearings in other work — in functional analysis, homological algebra and finally algebraic geometry.
It is probably wrong to say that he promoted the adjoint functor concept in isolation: but recognition of the role of adjunction was inherent in Grothendieck's approach. For example, one of his major achievements was the formulation of Serre duality in relative form — loosely, in a continuous family of algebraic varieties. The entire proof turned on the existence of a right adjoint to a certain functor. This is something undeniably abstract, and nonconstructive, but also powerful in its own way.
Posets
Every partially ordered set can be viewed as a category (with a single morphism between x and y if and only if x ≤ y). A pair of adjoint functors between two partially ordered sets is called a Galois connection (or, if it is contravariant, an antitone Galois connection). See that article for a number of examples: the case of Galois theory of course is a leading one. Any Galois connection gives rise to closure operators and to inverse orderpreserving bijections between the corresponding closed elements.
As is the case for Galois groups, the real interest lies often in refining a correspondence to a duality (i.e. antitone order isomorphism). A treatment of Galois theory along these lines by Kaplansky was influential in the recognition of the general structure here.
The partial order case collapses the adjunction definitions quite noticeably, but can provide several themes:
 adjunctions may not be dualities or isomorphisms, but are candidates for upgrading to that status
 closure operators may indicate the presence of adjunctions, as corresponding monads (cf. the Kuratowski closure axioms)
 a very general comment of William Lawvere^{} is that syntax and semantics are adjoint: take C to be the set of all logical theories (axiomatizations), and D the power set of the set of all mathematical structures. For a theory T in C, let F(T) be the set of all structures that satisfy the axioms T; for a set of mathematical structures S, let G(S) be the minimal axiomatization of S. We can then say that F(T) is a subset of S if and only if T logically implies G(S): the "semantics functor" F is left adjoint to the "syntax functor" G.
 division is (in general) the attempt to invert multiplication, but many examples, such as the introduction of implication in propositional logic, or the ideal quotient for division by ring ideals, can be recognised as the attempt to provide an adjoint.
Together these observations provide explanatory value all over mathematics.
Examples
Free groups
The construction of free groups is a common and illuminating example.
Suppose that F : Grp ← Set is the functor assigning to each set Y the free group generated by the elements of Y, and that G : Grp → Set is the forgetful functor, which assigns to each group X its underlying set. Then F is left adjoint to G:
Terminal morphisms. For each group X, the group FGX is the free group generated freely by GX, the elements of X. Let be the group homomorphism which sends the generators of FGX to the elements of X they correspond to, which exists by the universal property of free groups. Then each is a terminal morphism from F to X, because any group homomorphism from a free group FZ to X will factor through via a unique set map from Z to GX. This means that (F,G) is an adjoint pair.
Initial morphisms. For each set Y, the set GFY is just the underlying set of the free group FY generated by Y. Let be the set map given by "inclusion of generators". Then each is an initial morphism from Y to G, because any set map from Y to the underlying set GW of a group will factor through via a unique group homomorphism from FY to W. This also means that (F,G) is an adjoint pair.
Homset adjunction. Maps from the free group FY to a group X correspond precisely to maps from the set Y to the set GX: each homomorphism from FY to X is fully determined by its action on generators. One can verify directly that this correspondence is a natural transformation, which means it is a homset adjunction for the pair (F,G).
Counitunit adjunction. One can also verify directly that ε and η are natural. Then, a direct verification that they form a counitunit adjunction is as follows:
The first counitunit equation says that for each set Y the composition
should be the identity. The intermediate group FGFY is the free group generated freely by the words of the free group FY. (Think of these words as placed in parentheses to indicate that they are independent generators.) The arrow is the group homomorphism from FY into FGFY sending each generator y of FY to the corresponding word of length one (y) as a generator of FGFY. The arrow is the group homomorphism from FGFY to FY sending each generator to the word of FY it corresponds to (so this map is "dropping parentheses"). The composition of these maps is indeed the identity on FY.
The second counitunit equation says that for each group X the composition
should be the identity. The intermediate set GFGX is just the underlying set of FGX. The arrow is the "inclusion of generators" set map from the set GX to the set GFGX. The arrow is the set map from GFGX to GX which underlies the group homomorphism sending each generator of FGX to the element of X it corresponds to ("dropping parentheses"). The composition of these maps is indeed the identity on GX.
Free constructions and forgetful functors
Free objects are all examples of a left adjoint to a forgetful functor which assigns to an algebraic object its underlying set. These algebraic free functors have generally the same description as in the detailed description of the free group situation above.
Diagonal functors and limits
Products, fibred products, equalizers, and kernels are all examples of the categorical notion of a limit. Any limit functor is right adjoint to a corresponding diagonal functor (provided the category has the type of limits in question), and the counit of the adjunction provides the defining maps from the limit object (i.e. from the diagonal functor on the limit, in the functor category). Below are some specific examples.
 Products Let Π : Grp^{2} → Grp the functor which assigns to each pair (X_{1}, X_{2}) the product group X_{1}×X_{2}, and let Δ : Grp^{2} ← Grp be the diagonal functor which assigns to every group X the pair (X, X) in the product category Grp^{2}. The universal property of the product group shows that Π is rightadjoint to Δ. The counit of this adjunction is the defining pair of projection maps from X_{1}×X_{2} to X_{1} and X_{2} which define the limit, and the unit is the diagonal inclusion of a group X into X_{1}×X_{2} (mapping x to (x,x)).
 The cartesian product of sets, the product of rings, the product of topological spaces etc. follow the same pattern; it can also be extended in a straightforward manner to more than just two factors. More generally, any type of limit is right adjoint to a diagonal functor.
 Kernels. Consider the category D of homomorphisms of abelian groups. If f_{1} : A_{1} → B_{1} and f_{2} : A_{2} → B_{2} are two objects of D, then a morphism from f_{1} to f_{2} is a pair (g_{A}, g_{B}) of morphisms such that g_{B}f_{1} = f_{2}g_{A}. Let G : D → Ab be the functor which assigns to each homomorphism its kernel and let F : D ← Ab be the functor which maps the group A to the homomorphism A → 0. Then G is right adjoint to F, which expresses the universal property of kernels. The counit of this adjunction is the defining embedding of a homomorphism's kernel into the homomorphism's domain, and the unit is the morphism identifying a group A with the kernel of the homomorphism A → 0.
 A suitable variation of this example also shows that the kernel functors for vector spaces and for modules are right adjoints. Analogously, one can show that the cokernel functors for abelian groups, vector spaces and modules are left adjoints.
Colimits and diagonal functors
Coproducts, fibred coproducts, coequalizers, and cokernels are all examples of the categorical notion of a colimit. Any colimit functor is left adjoint to a corresponding diagonal functor (provided the category has the type of colimits in question), and the unit of the adjunction provides the defining maps into the colimit object. Below are some specific examples.
 Coproducts. If F : Ab ← Ab^{2} assigns to every pair (X_{1}, X_{2}) of abelian groups their direct sum, and if G : Ab → Ab^{2} is the functor which assigns to every abelian group Y the pair (Y, Y), then F is left adjoint to G, again a consequence of the universal property of direct sums. The unit of this adjoint pair is the defining pair of inclusion maps from X_{1} and X_{2} into the direct sum, and the counit is the additive map from the direct sum of (X,X) to back to X (sending an element (a,b) of the direct sum to the element a+b of X).
 Analogous examples are given by the direct sum of vector spaces and modules, by the free product of groups and by the disjoint union of sets.
Further examples
Algebra
 Adjoining an identity to a rng. This example was discussed in the motivation section above. Given a rng R, a multiplicative identity element can be added by taking RxZ and defining a Zbilinear product with (r,0)(0,1) = (0,1)(r,0) = (r,0), (r,0)(s,0) = (rs,0), (0,1)(0,1) = (0,1). This constructs a left adjoint to the functor taking a ring to the underlying rng.
 Ring extensions. Suppose R and S are rings, and ρ : R → S is a ring homomorphism. Then S can be seen as a (left) Rmodule, and the tensor product with S yields a functor F : RMod → SMod. Then F is left adjoint to the forgetful functor G : SMod → RMod.
 Tensor products. If R is a ring and M is a right R module, then the tensor product with M yields a functor F : RMod → Ab. The functor G : Ab → RMod, defined by G(A) = hom_{Z}(M,A) for every abelian group A, is a right adjoint to F.
 From monoids and groups to rings The integral monoid ring construction gives a functor from monoids to rings. This functor is left adjoint to the functor that associates to a given ring its underlying multiplicative monoid. Similarly, the integral group ring construction yields a functor from groups to rings, left adjoint to the functor that assigns to a given ring its group of units. One can also start with a field K and consider the category of Kalgebras instead of the category of rings, to get the monoid and group rings over K.
 Field of fractions. Consider the category Dom_{m} of integral domains with injective morphisms. The forgetful functor Field → Dom_{m} from fields has a left adjoint  it assigns to every integral domain its field of fractions.
 Polynomial rings. Let Ring_{*} be the category of pointed commutative rings with unity (pairs (A,a) where A is a ring, and morphisms preserve the distinguished elements). The forgetful functor G:Ring_{*} → Ring has a left adjoint  it assigns to every ring R the pair (R[x],x) where R[x] is the polynomial ring with coefficients from R.
 Abelianization. Consider the inclusion functor G : Ab → Grp from the category of abelian groups to category of groups. It has a left adjoint called abelianization which assigns to every group G the quotient group G^{ab}=G/[G,G].
 The Grothendieck group. In Ktheory, the point of departure is to observe that the category of vector bundles on a topological space has a commutative monoid structure under direct sum. One may make an abelian group out of this monoid, the Grothendieck group, by formally adding an additive inverse for each bundle (or equivalence class). Alternatively one can observe that the functor that for each group takes the underlying monoid (ignoring inverses) has a left adjoint. This is a onceforall construction, in line with the third section discussion above. That is, one can imitate the construction of negative numbers; but there is the other option of an existence theorem. For the case of finitary algebraic structures, the existence by itself can be referred to universal algebra, or model theory; naturally there is also a proof adapted to category theory, too.
 Frobenius reciprocity in the representation theory of groups: see induced representation. This example foreshadowed the general theory by about half a century.
Topology
 A functor with a left and a right adjoint. Let G be the functor from topological spaces to sets that associates to every topological space its underlying set (forgetting the topology, that is). G has a left adjoint F, creating the discrete space on a set Y, and a right adjoint H creating the trivial topology on Y.
 Suspensions and loop spaces Given topological spaces X and Y, the space [SX, Y] of homotopy classes of maps from the suspension SX of X to Y is naturally isomorphic to the space [X, ΩY] of homotopy classes of maps from X to the loop space ΩY of Y. This is an important fact in homotopy theory.
 StoneČech compactification. Let KHaus be the category of compact Hausdorff spaces and G : KHaus → Top be the inclusion functor to the category of topological spaces. Then G has a left adjoint F : Top → KHaus, the Stone–Čech compactification. The unit of this adjoint pair yields a continuous map from every topological space X into its StoneČech compactification. This map is an embedding (i.e. injective, continuous and open) if and only if X is a Tychonoff space.
 Direct and inverse images of sheaves Every continuous map f : X → Y between topological spaces induces a functor f _{∗} from the category of sheaves (of sets, or abelian groups, or rings...) on X to the corresponding category of sheaves on Y, the direct image functor. It also induces a functor f ^{−1} from the category of sheaves of abelian groups on Y to the category of sheaves of abelian groups on X, the inverse image functor. f ^{−1} is left adjoint to f _{∗}. Here a more subtle point is that the left adjoint for coherent sheaves will differ from that for sheaves (of sets).
 Soberification. The article on Stone duality describes an adjunction between the category of topological spaces and the category of sober spaces that is known as soberification. Notably, the article also contains a detailed description of another adjunction that prepares the way for the famous duality of sober spaces and spatial locales, exploited in pointless topology.
Category theory
 A series of adjunctions. The functor π_{0} which assigns to a category its set of connected components is leftadjoint to the functor D which assigns to a set the discrete category on that set. Moreover, D is leftadjoint to the object functor U which assigns to each category its set of objects, and finally U is leftadjoint to A which assigns to each set the indiscrete category on that set.
 Exponential object. In a cartesian closed category the endofunctor C → C given by –×A has a right adjoint –^{A}.
Categorical logic
 Quantification. If is a unary predicate expressing some property, then a sufficiently strong set theory may prove the existence of the set of terms that fulfill the property. A proper subset and the associated injection of into is characterized by a predicate expressing a strictly more restrictive property.
 The role of quantifiers in predicate logics is in forming propositions and also in expressing sophisticated predicates by closing formulas with possibly more variables. For example, consider a predicate with two open variables of sort and . Using a quantifier to close , we can form the set
 of all elements of for which there is an to which it is related, and which itself is characterized by the property . Set theoretic operations like the intersection of two sets directly corresponds to the conjunction of predicates. In categorical logic, a subfield of topos theory, quantifiers are identified with adjoints to the pullback functor. Such a realization can be seen in analogy to the discussion of propositional logic using set theory but, interestingly, the general definition make for a richer range of logics.
 So consider an object in a category with pullbacks. Any morphism induces a functor
 on the category that is the preorder of subobjects. It maps subobjects of (technically: monomorphism classes of ) to the pullback . If this functor has a left or right adjoint, they are called and , respectively.^{} They both map from back to . Very roughly, given a domain to quantify a relation expressed via over, the functor/quantifier closes in and returns the thereby specified subset of .
 Example: In , the category of sets and functions, the canonical subobjects are the subset (or rather their canonical injections). The pullback of an injection of a subset into along is characterized as the largest set which knows all about and the injection of into . It therefore turns out to be (in bijection with) the inverse image .
 For , let us figure out the left adjoinet, which is defined via
 which here just means
 .
 Consider . We see . Conversely, If for an we also have , then clearly . So implies . We concude that left adjoint to the inverse image functor is given by the direct image. Here is a characterization of this result, which matches more the logical interpretation: The image of under is the full set of 's, such that is nonempty. This works because it neglects exactly those which are in the complement of . So
 Put this in analogy to our motivation .
 The right adjoint to the inverse image functor is given (without doing the computation here) by
 The subset of is characterized as the full set of 's with the property that the inverse image of with respect to is fully contained within . Note how the predicate determining the set is the same as above, except that is replaced by .
 See also powerset.
Properties
Existence
Not every functor G : C → D admits a left adjoint. If C is a complete category, then the functors with left adjoints can be characterized by the adjoint functor theorem of Peter J. Freyd: G has a left adjoint if and only if it is continuous and a certain smallness condition is satisfied: for every object Y of D there exists a family of morphisms
 f_{i} : Y → G(X_{i})
where the indices i come from a set I, not a proper class, such that every morphism
 h : Y → G(X)
can be written as
 h = G(t) o f_{i}
for some i in I and some morphism
 t : X_{i} → X in C.
An analogous statement characterizes those functors with a right adjoint.
Uniqueness
If the functor F : C ← D has two right adjoints G and G′, then G and G′ are naturally isomorphic. The same is true for left adjoints.
Conversely, if F is left adjoint to G, and G is naturally isomorphic to G′ then F is also left adjoint to G′. More generally, if 〈F, G, ε, η〉 is an adjunction (with counitunit (ε,η)) and
 σ : F → F′
 τ : G → G′
are natural isomorphisms then 〈F′, G′, ε′, η′〉 is an adjunction where
Here denotes vertical composition of natural transformations, and denotes horizontal composition.
Composition
Adjunctions can be composed in a natural fashion. Specifically, if 〈F, G, ε, η〉 is an adjunction between C and D and 〈F′, G′, ε′, η′〉 is an adjunction between D and E then the functor
is left adjoint to
More precisely, there is an adjunction between F′ F and G G′ with unit and counit given by the compositions:
This new adjunction is called the composition of the two given adjunctions.
One can then form a category whose objects are all small categories and whose morphisms are adjunctions.
Limit preservation
The most important property of adjoints is their continuity: every functor that has a left adjoint (and therefore is a right adjoint) is continuous (i.e. commutes with limits in the category theoretical sense); every functor that has a right adjoint (and therefore is a left adjoint) is cocontinuous (i.e. commutes with colimits).
Since many common constructions in mathematics are limits or colimits, this provides a wealth of information. For example:
 applying a right adjoint functor to a product of objects yields the product of the images;
 applying a left adjoint functor to a coproduct of objects yields the coproduct of the images;
 every right adjoint functor is left exact;
 every left adjoint functor is right exact.
Additivity
If C and D are preadditive categories and F : C ← D is an additive functor with a right adjoint G : C → D, then G is also an additive functor and the homset bijections
are, in fact, isomorphisms of abelian groups. Dually, if G is additive with a left adjoint F, then F is also additive.
Moreover, if both C and D are additive categories (i.e. preadditive categories with all finite biproducts), then any pair of adjoint functors between them are automatically additive.
Relationships
Universal constructions
As stated earlier, an adjunction between categories C and D gives rise to a family of universal morphisms, one for each object in C and one for each object in D. Conversely, if there exists a universal morphism to a functor G : C → D from every object of D, then G has a left adjoint.
However, universal constructions are more general than adjoint functors: a universal construction is like an optimization problem; it gives rise to an adjoint pair if and only if this problem has a solution for every object of D (equivalently, every object of C).
Equivalences of categories
If a functor F: C←D is one half of an equivalence of categories then it is the left adjoint in an adjoint equivalence of categories, i.e. an adjunction whose unit and counit are isomorphisms.
Every adjunction 〈F, G, ε, η〉 extends an equivalence of certain subcategories. Define C_{1} as the full subcategory of C consisting of those objects X of C for which ε_{X} is an isomorphism, and define D_{1} as the full subcategory of D consisting of those objects Y of D for which η_{Y} is an isomorphism. Then F and G can be restricted to D_{1} and C_{1} and yield inverse equivalences of these subcategories.
In a sense, then, adjoints are "generalized" inverses. Note however that a right inverse of F (i.e. a functor G such that FG is naturally isomorphic to 1_{D}) need not be a right (or left) adjoint of F. Adjoints generalize twosided inverses.
Monads
Every adjunction 〈F, G, ε, η〉 gives rise to an associated monad 〈T, η, μ〉 in the category D. The functor
is given by T = GF. The unit of the monad
is just the unit η of the adjunction and the multiplication transformation
is given by μ = GεF. Dually, the triple 〈FG, ε, FηG〉 defines a comonad in C.
Every monad arises from some adjunction—in fact, typically from many adjunctions—in the above fashion. Two constructions, called the category of Eilenberg–Moore algebras and the Kleisli category are two extremal solutions to the problem of constructing an adjunction that gives rise to a given monad.
References
 Adámek, Jiří; Herrlich, Horst; Strecker, George E. (1990). Abstract and Concrete Categories. The joy of cats (PDF). John Wiley & Sons. ISBN 0471609226. Zbl 0695.18001.
 Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics 5 (2nd ed.). SpringerVerlag. ISBN 0387984038. Zbl 0906.18001.
External links
 Adjunctions Seven short lectures on adjunctions.
